Leakage-Resilient Symmetric Cryptography under Empirically Verifiable Assumptions

نویسندگان

  • François-Xavier Standaert
  • Olivier Pereira
  • Yu Yu
چکیده

Leakage-resilient cryptography aims at formally proving the security of cryptographic implementations against large classes of sidechannel adversaries. One important challenge for such an approach to be relevant is to adequately connect the formal models used in the proofs with the practice of side-channel attacks. It raises the fundamental problem of finding reasonable restrictions of the leakage functions that can be empirically verified by evaluation laboratories. In this paper, we first argue that the previous “bounded leakage” requirements used in leakageresilient cryptography are hard to fulfill by hardware engineers. We then introduce a new, more realistic and empirically verifiable assumption of simulatable leakage, under which security proofs in the standard model can be obtained. We finally illustrate our claims by analyzing the physical security of an efficient pseudorandom generator (for which security could only be proven under a random oracle based assumption so far). These positive results come at the cost of (algorithm-level) specialization, as our new assumption is specifically defined for block ciphers. Nevertheless, since block ciphers are the main building block of many leakageresilient cryptographic primitives, our results also open the way towards more realistic constructions and proofs for other pseudorandom objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Leakage-Resilient Pseudorandom Objects with Minimum Public Randomness

One of the main challenges in leakage-resilient cryptography is to obtain proofs of security against side-channel attacks, under realistic assumptions and for efficient constructions. In a recent work from CHES 2012, Faust et al. proposed new designs of stream ciphers and pseudorandom functions for this purpose. Yet, a remaining limitation of these constructions is that they require large amoun...

متن کامل

Dealer-Leakage Resilient Verifiable Secret Sharing

Verifiable Secret Sharing (VSS) guarantees that honest parties reconstruct a consistent secret even in the presence of a malicious dealer that distributes invalid shares. We empower the dishonest dealer and consider the case when he subliminally leaks information in valid shares, allowing an adversary to access the secret prior to the reconstruction phase. We define the concept of Dealer-Leakag...

متن کامل

Leakage-Resilient Tweakable Encryption from One-Way Functions

In this paper, we initiate the study of leakage-resilient tweakable encryption schemes in the relative key-leakage model, where the adversary can obtain (arbitrary) partial information about the secret key. We also focus on the minimal and generic assumptions needed to construct such a primitive. Interestingly, we show provably secure constructions of leakage-resilient (LR) tweakable encryption...

متن کامل

A Leakage-Resilient Pairing-Based Variant of the Schnorr Signature Scheme

Leakage-resilient cryptography aims at capturing side-channel attacks within the provable security framework. Currently there exists a plethora of schemes with provably secure guarantees against a variety of side-channel attacks. However, meeting the strongest security levels (resilience against continual leakage attacks) under the weakest assumptions leads currently to costly schemes. Addition...

متن کامل

Practical Leakage-Resilient Symmetric Cryptography

Leakage resilient cryptography attempts to incorporate sidechannel leakage into the black-box security model and designs cryptographic schemes that are provably secure within it. Informally, a scheme is leakage-resilient if it remains secure even if an adversary learns a bounded amount of arbitrary information about the schemes internal state. Unfortunately, most leakage resilient schemes are u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013